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ABSTRACT KEYWORDS:  artificial neural network, matrix tablets, 
controlled release, Eudragit L 100, aspirin The purpose of the present study was to model the 

effects of the concentration of Eudragit L 100 and 
compression pressure as the most important process 
and formulation variables on the in vitro release pro-
file of aspirin from matrix tablets formulated with 
Eudragit L 100 as matrix substance and to optimize 
the formulation by artificial neural network. As model 
formulations, 10 kinds of aspirin matrix tablets were 
prepared. The amount of Eudragit L 100 and the 
compression pressure were selected as causal factors. 
In vitro dissolution time profiles at 4 different sam-
pling times were chosen as responses. A set of release 
parameters and causal factors were used as tutorial 
data for the generalized regression neural network 
(GRNN) and analyzed using a computer. Observed 
results of drug release studies indicate that drug re-
lease rates vary widely between investigated formula-
tions, with a range of 5 hours to more than 10 hours to 
complete dissolution. The GRNN model was opti-
mized. The root mean square value for the trained 
network was 1.12%, which indicated that the optimal 
GRNN model was reached. Applying the generalized 
distance function method, the optimal tablet formula-
tion predicted by GRNN was with 5% of Eudragit L 
100 and tablet hardness 60N. Calculated difference (f1 
2.465) and similarity (f2 85.61) factors indicate that 
there is no difference between predicted and experi-
mentally observed drug release profiles for the opti-
mal formulation. This work illustrates th9e potential 
for an artificial neural network, GRNN, to assist in 
development of extended release dosage forms. 

 

INTRODUCTION 
The application of artificial neural networks (ANNs) 
in the field of pharmaceutical development and opti-
mizing of dosage forms has recently become a topic 
of discussion in the pharmaceutical literature.1-5 Com-
pared with classical statistical optimization tech-
niques, such as response surface methodology, ANNs 
show superiority as a modeling technique for data sets 
showing nonlinear relationships, and thus for both 
data fitting and prediction abilities.6-8 
ANN is a learning system based on a computational 
technique that can simulate the neurological process-
ing ability of the human brain and can be applied to 
quantifying a nonlinear relationship between causal 
factors and pharmaceutical responses by means of 
iterative training of data obtained from a designed 
experiment.9 
Matrix systems appear very attractive from the eco-
nomic as well as from the process development and 
scale-up points of view in controlled release sys-
tems.10,11 In our earlier studies,12,13 the influence of 
various formulation variables on aspirin release from 
Eudragit matrices was investigated; the ratio of poly-
mer as well as the compression pressure (influencing 
tablet porosity) were identified as the most important 
factors affecting drug release from matrix tablets. 
The objectives of the present study were to model the 
effect of process and formulation variables on the in 
vitro release profile of aspirin from matrix tablets 
formulated with Eudragit L 100 as the matrix sub-
stance and to optimize the formulation by ANN. 
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GENERALIZED REGRESSION NEURAL NETWORK 

Figure 1. GRNN: 2 inputs in input layer, 10 radial 
units in hidden layer, 5 units in regression layer, and 4 
units in output layer. 

The standard supervised network architectures (multi-
layer perceptrons and radial basis functions) infer a 
parameterized model (the weights forming the pa-
rameters) from available training data. The parameter-
ized model (the network) is usually much smaller than 
the training data and can be executed quite quickly, 
although the time taken to train the model may be 
long. An alternative approach is to model the function 
more or less directly from the training data. This has 
the advantage that there is no need for training (or, at 
least, one can use "training" that is actually very sim-
ple, consisting of little more than changing the form 
in which the training data are held). Bayesian net-
works, often called generalized regression neural net-
works (GRNNs), are such methods. They have 4 lay-
ers (Figure 1): input, a layer of radial centers, a layer 
of regression units, and output. They were devised by 
Speckt,14 who cast a statistical method of function 
approximation in a neural network form.15,16 The ra-
dial layer units represent the centers of clusters of 
known training data. This layer must be trained by a 
clustering algorithm such as subsampling, K-means, 
or Kohonen training. The layer is typically large but 
not necessarily as large as the number of training 
cases. The regression layer must have exactly 1 unit 
more than the output layer. The regression layer con-
tains linear units. There are 2 types of units in the re-
gression layer: 1 type A unit for each output unit, and 
1 type B unit. Type A units calculate the "desired" 
regression outputs for the cases; the type B unit calcu-
lates the probability density. The output layer per-
forms a specialized function. Each unit simply divides 
the output of the associated type A unit by that of the 
type B unit in the previous layer. It is a special post 
synaptic function (PSP)-division. Regression net-
works train extremely rapidly.17 

 
urements. The amount of ASA and salicylic acid per 
tablet was assayed by high-pressure liquid chromatog-
raphy analysis, according to the USP 23 monograph 
for aspirin extended release tablets. For all formula-
tions, the content of salicylic acid was lower than 
0.1%. 
The dissolution study was performed in a rotating 
paddle apparatus (Erweka DT70, Heusenstamm), ac-
cording to the USP drug release test for aspirin ex-
tended release tablets: Test 2 (water, 1000 mL, 30 
rpm). The amount of aspirin released was determined 
by measuring the absorbance at 265 nm (Spectropho-
tometer GBC-UV, Dandenong, Australia). All the 
tests were performed with 6 tablets. 
 

Design  

Eudragit L 100 (chosen as the matrix substance) and 
compression pressure (expressed through tablet hard-
ness) were screened out as the most important factors 
responsible for the cumulative percentage of aspirin 
released in 8 hours. Therefore a 2-factor spherical 
second-order composite experimental design was em-
ployed to generate factor combinations. Table 1 
summarizes the factors and their levels. Ten runs with 
4 additional test points (T1, T2, T3, T4) were gener-
ated (Table 2). Test formulations (T1, T2, T3, T4, 
Table 2) were used for validation of ANN and testing 
the generalized abilities of ANN. 

MATERIALS AND METHODS 
Acetylsalicylic acid (ASA) was PhEur 1997 grade. 
Eudragit L 100 was kindly supplied by Rhom Pharma 
(Frankfurt, Germany). Avicel PH 112 (FMC Co, 
Philadelphia, PA), Aerosil 200 (Degusa, Frankfurt, 
Germany), Pruv (Mendell, London, UK), and talc 
(PhEur 1997) were used for model formulation. Tab-
lets (325 mg ASA per tablet) were prepared with the 
direct compression method on an eccentric press 
(EKO Korsch, Berlin, Germany) using flat punches Ø 
10 mm. Tablet hardness was measured by hardness 
tester Erweka TBH 28 (Heusenstamm, Germany) 
Tablet hardness values present average of 20 meas-  
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Table 1. Central Composite Design Factors 

 Levels Used 

Factors –2.5 –1 0 1 2.5 

X1: percentage of Eudragit L 100 2 2.58 4 5.41 6 

X2: tablet hardness (N) 25 35 57.5 80.4 90 
 
 

Table 2. Experimental (E) and Predicted (P) Values for Chosen Outputs 

 Y1 Y2 Y3 Y4 

 P E P E P E P E 

F1 47.00 47.03 74.66 74.69 92.61 92.62 103.4 103.4 
F2 21.38 21.36 47.17 47.16 91.38 91.42 102.3 102.3 
F3 13.81 13.81 21.61 21.61 33.95 33.94 47.49 47.48 
F4 17.03 17.03 26.23 26.22 47.02 46.99 67.21 67.19 

F5 14.06 14.06 21.81 21.81 32.86 32.85 49.55 49.54 
F6 23.12 23.12 50.35 50.36 80.40 80.44 99.16 99.19 

F7 17.02 16.66 30.08 29.81 49.79 49.87 67.44 68.76 
F8 17.02 17.37 30.08 30.35 49.79 49.71 67.44 66.11 
F9 14.47 14.46 26.46 26.44 42.44 42.41 62.08 62.06 

F10 36.11 36.11 65.80 65.80 77.18 77.17 99.43 99.43 
T1 14.08 12.96 23.62 20.86 37.46 33.36 53.55 56.24 
T2 23.83 28.81 50.34 50.46 78.09 77.43 97.08 98.58 
T3 37.39 22.06 62.46 49.21 78.91 69.30 94.45 93.37 
T4 17.03 13.24 26.22 22.66 47.00 36.85 67.19 55.23  

 

Computer Program 
Commercially available STATISTICA Neural Net-
works software (StatSoft, Inc, Tulsa, OK was used 
throughout the study. GRNN was used in modeling 
and optimization of aspirin extended release tablets. 
In a GRNN model, it is possible to select (1) the num-
ber of units (nodes) in the second radial layer, (2) the 
smoothing factor (which controls the deviation of the 
Gaussian kernel function located at the radial centers), 
and (3) the clustering algorithm (eg, subsampling, K-
means, Kohonen). 
Initially, in the radial layer, the number of hidden 
units was varied from 1 to 10, using smoothing factor 
0.1 and the K-means clustering algorithm. To select 

the optimal GRNN model, regression plots were con-
structed of the observed versus predicted responses 
for the 2 test formulations that were excluded from 
the 10-formulation data set. The GRNN model that 
yielded a regression plot with a slope and square coef-
ficient (r2) that were closest to a value of 1.0 was se-
lected as the optimal GRNN model. A sum-squared 
error function was used in training the network. (The 
error is the sum of the squared differences between 
the target and actual output valued on each output 
unit.) 
Learned GRNN was used for modeling, simulation, 
and optimization of the model extended release for-
mulation in the following ways: 
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RESULTS AND DISCUSSION • Testing experimental points in experimental 
fields  

Release Behaviors 
• Searching for the optimal solutions  

Release behaviors of ASA from the tablets are shown 
in Figure 3. A wide variation in these profiles among 
experiments was observed, indicating that dissolution 
was greatly affected by changes in the levels of causal 
factors. Table 2 shows the experimentally observed 
percentages of ASA dissolved after 1, 2, 4, and 8 
hours of dissolution study. The drug release rates vary 
widely, with a range of 5 hours to more than 10 hours 
for complete dissolution. 

• Presenting response surfaces (or contour plots) 
Figure 2 shows a typical flow of the GRNN-
incorporated simultaneous optimization technique 
developed in this study. Factorial experimental design 
was applied when preparing systemic model formula-
tions composed of 2 causal factors. The response 
variables of these model formulations are predicted 
quantitatively from a combination of these factors by 
means of GRNN. As is typical of optimization prob-
lems, the individual optima for different responses are 
not the same. Therefore, the response variables should 
be incorporated into a single function to consider all 
the responses simultaneously. For this purpose, the 
general transformation was based on the distance be-
tween the predicted values of each response and the 
optimized one that was obtained individually.18 The 
simultaneous optimum can be estimated by the mini-
mized generalized distance function under the restric-
tion of the experimental region. 

 

GRNN Structure 

Two causal factors corresponding to different levels 
of Eudragit L 100 (X1) and tablet hardness (X2) were 
used as each unit of the input layer in the GRNN. Re-
sponses were used as 4 output layers 

• Y1: percentage of ASA dissolved after 1 hour  
• Y2: percentage of ASA dissolved after 2 hours  
• Y3: percentage of ASA dissolved after 4 hours  

 • Y4: percentage of ASA dissolved after 8 hours 

Figure 2. Flow of multiobjective simultaneous opti-
mization technique incorporating GRNN. 

A set of outputs and causal factors was used as tuto-
rial data (training runs F1-F10) and fed into a com-
puter. Several training sessions were conducted with 
different numbers of units (1-10) in the second hidden 
(radial) layer to determine the optimal GRNN struc-
ture. Regression plots were constructed of predicted 
and observed responses for the 4 test formulations, 
and slopes and r2 values were determined. Figure 4 is 
a representative plot of the slopes and r2 values for a 
GRNN model as a function of the number of hidden 
layer units. Based on the data shown in Figure 4, the 
optimized GRNN model consisted of 10 units in the 
radial hidden layer, since both the slope and r2 ap-
proached 1.0. The learning period was completed 
when minimum root mean square (RMS) was 
reached: 

RMS = [Σ(yi
p – yi

m)2/n]1/2 (1) 

where yI
p is experimental (observed) response, yI

m is 
calculated (predicted) response, and n is number of 
experiments. 
The selected GRNN structure was with 4 layers 
(Figure 1): the first layer with 2 input units and the 
second layer with 10 hidden units (with negative ex-
ponential activation function and radial PSP function). 
These units in the hidden layer were assigned using 
the K-means center assignment algorithm. A third 
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Figure 3. Release profiles of ASA from model formulations (formulation 1-10, Table 1); 
the mean of 6 determinations. 

 

 

Figure 4. Plot of the regression slopes and squared correlation coefficients 
(r2) for the 2 test formulations, as a function of the number of hidden layer 
units using a GRNN model with 1- to 10-layer units. 

 
layer has 5 units (with linear activation and PSP func-
tion). The fourth layer has 4 output units (linear acti-
vation and division PSP function). Regression net-
work training sets the weights on the third and fourth 

layers, which are used to estimate the regression 
curve. 
Input values for test formulations (T1, T2, T3, T4, 
Table 2) were presented to GRNN when network 
training was completed. 
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Figure 5. Response surfaces of the influence of the percentage of Eudragit L 100 and 
tablet hardness on the percentage of ASA released after (A) 1 hour, (B) 2 hours, (C) 4 
hours, and (D) 8 hours, predicted using the GRNN. 

 
Experimental and calculated values for training for-
mulations (F1-F10) as well as test formulations are 
presented in Table 2. RMS reached after the training 
was 1.12%, which is an acceptable value. 
Correlation plots were constructed for predicted ver-
sus observed values of drug release for test formula-
tions. The GRNN model yielded a regression plot 
with squared coefficients (r2) that were closest to a 
value of 1.0 (for all formulations >0.99), which indi-
cate that the optimal GRNN model was reached. 
 

Optimization 
Response surfaces of the effect of ratio of Eudragit L 
100 and tablet hardness on the percentage of aspirin 
dissolved after 1, 2, 4, and 8 hours of testing, pre-
dicted using GRNN, are presented in Figure 5 (A-D) 
and corresponding contour plots in Figure 6 (A-D). 
Bold red lines indicate pharmacopoeia limits. An in-
crease of tablet hardness (ie, compression pressure) 
resulted in a decrease in the percentage of aspirin dis-
solved after 1 to 8 hours because of reduced tablet 

porosity. The influence of the percentage of Eudragit 
L 100 seems to have been negligible. This suggests 
that compression pressure acts as the controlling agent 
in the release of aspirin from the matrix tablets. 
According to USP 23, after 1 hour of testing, aspirin 
extended release tablets have to release 15% to 40% 
of ASA, after 2 hours 25% to 60%, after 4 hours 35% 
to 75%, and after 8 hours more than 70%. 
The optimization of the aspirin extended release tab-
lets was performed according to the generalized dis-
tance function method.18 Predicted optimal tablet for-
mulation is with 5% of Eudragit L 100 and tablet 
hardness 60N. This tablet formulation was prepared, 
and in vitro release was performed 
Experimental observed aspirin release from this opti-
mal formulation, and the aspirin release predicted by 
GRNN, are presented in Figure 7. For every pair of 
experimental/predicted drug release profiles for test 
and optimal formulation, difference (f1) and similarity 
(f2) factors were calculated (Table 3). Table 3 shows 
calculated regression coefficients (r2) and slopes of 
regression curves of the observed versus predicted 
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Figure 6. Contour plots of the influence of percentage of Eudragit L 100 and tablet hardness on per-
centage of ASA released after (A) 1 hour, (B) 2 hours, (C) 4 hours, and (D) 8 hours, predicted using 
the GRNN. 

 

 

Figure 7. Predicted and experimental observed aspirin release from opti-
mal formulation. 
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Table 3. Difference (f1) and Similarity (f2) Factors for Test and Optimal Formulations* 

Profiles Predicted Using the 
GRNN f1 f2 Slope r2 

T1 4.286 75.870 1.0112 0.9876 

T2 2.319 77.614 0.9963 0.9993 

T3 5.670 71.120 0.9820 0.9970 

T4 9.767 73.73 0.9602 0.9954 

Optimal 2.465 85.61 1.0322 0.9997 

*GRNN indicates generalized regression neural network.  
 
release profiles. According to the US Food and Drug 
Administration's guides for industry,19 generally (f1 
values up to 15 (0-15) and (f2 values greater then 50 
ensure sameness of the 2 curves. Release profiles pre-
dicted by the GRNN coincided well with the experi-
mental values 
The satisfactory prediction of the drug release for test 
and optimal formulations by the GRNN in this study 
has clearly shown the applicability of a GRNN to 
modeling extended release tablet formulation. The 
superiority of the GRNN in handling nonlinear data 
makes it suitable for the formulation problem. 
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